Release Notes for HDL Coder™




LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Release Notes for HDL Coder™
© COPYRIGHT 2012-2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.


http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

R2013a

Static range analysis for floating-point to fixed-point

COMVETSION &ttt et ettt eettte e eeniieeeeeenns 2
User-specified pipeline insertion for MATLAB variables .. 3
Resource sharing and streaming without over clocking ... 4
Generation of custom IP core with AXI4 interface ....... 5
Coprocessor synchronization in FPGA Turnkey and IP Core

Generation workflows .............. ... .. .. 6
Code generation for System objects in a MATLAB Function

blocK .. e e 7
Resource sharing for the MATLAB Function block ...... 8
Finer control for delay balancing ..................... 9
Complex multiplication optimizations in the Product

blocK .. e e 10
Speedgoat 10331 Spartan-6 FPGA board for FPGA Turnkey

workflow . ... e 11
Cosimulation and FPGA-in-the-Loop for MATLAB HDL

code generation . ...........oiiiiiii. 12
HDL coding standard report and lint tool script generation

............................................... 13
Output folder structure includes model name ........... 14
File I/O to read test bench data in Verilog ............. 15
Prefix for module or entity name ..................... 16
Single rate Newton-Raphson architecture for Sqrt,

Reciprocal Sqrt ....... ... 17
Additional System objects supported for code generation .. 18
Additional blocks supported for code generation ......... 19
Functionality being removed ........................ 20

R2012b
Input parameter constants and structures in floating-point

to fixed-point CONVErSION . ... .vvvvevnnnineennennn. 22
RAM, biquad filter, and demodulator System objects ..... 23
Generation of MATLAB Function block in the MATLAB to

HDL workflow ........... ..., 24

iii



iv

Contents

HDL code generation for Reed Solomon encoder and
decoder, CRC detector, and multichannel Discrete FIR

flter ..o e e 25
Targeting of custom FPGA boards .................... 26
Optimizations for MATLAB Function blocks and black

DOXES e e e 27
Generate Xilinx System Generator Black Box block from

MATLAB .. 28
Save and restore HDL-related model parameters ........ 29
Command-line interface for MATLAB-to-HDL code

ENETAtION . . vt vttt 30
User-specifiable clock enable toggle rate in test bench . ... 31
RAM mapping for dsp.Delay System object ............ 32
Code generation for Repeat block with multiple clocks 33
Automatic verification with cosimulation using HDL

Coder .. e e 34
ML605 Board Added To Turnkey Workflow ............ 35

R2012a
Product Name Change and Extended Capability ........ 38
Code Generation from MATLAB ..................... 39
Code Generation from Any Level of Subsystem

Hierarchy ......... .. .. i 40
Automated Subsystem Hierarchy Flattening ........... 41
Support for Discrete Transfer Fen Block ............... 42
User Option to Constrain Registers on Output Ports ..... 43
Distributed Pipelining for Sum of Elements, Product of

Elements, and MinMax Blocks .................... 44
MATLAB Function Block Enhancements .............. 45
Automated Code Generation from Xilinx System Generator

for DSPBlocks . ...t 46
Altera Quartus II 11.0 Support in HDL Workflow

AdVISOr ..ot e 47
Automated Mapping to Xilinx and Altera Floating Point

Libraries .......... i e e 48
Vector Data Type for PCI Interface Data Transfers Between

xPC Target and FPGA ............ ... ... ... ... 49
New Global Property to Select RAM Architecture ....... 50
Turnkey Workflow for Altera Boards .................. 51
HDL Support For Bus Creator and Bus Selector Blocks 52
HDL Support For HDL CRC Generator Block .......... 53



HDL Support for Programmable Filter Coefficients ......
Synchronous Multiclock Code Generation for CIC
Decimators and Interpolators .....................
Filter Block Resource Report Participation .............
HDL Block Properties Interface Allows Choice of Filter
Architecture ..........cciiiiiiiiiiii i,
HDL Support for FIR Filters With Serial Architectures and
ComplexInputs .......... ... i,
HDL Support for External Reset Added for
Proportional-Integral-Derivative (PID) and Discrete
Time Integrator (DTI) Blocks ......................

54

55
56

58

60

61



vi Contents



R2013a

Version: 3.2
New Features: Yes
Bug Fixes: No



R2013a

Static range analysis for floating-point to fixed-point
conversion

The coder can now use static range analysis to derive fixed-point data types
for your floating-point MATLAB® code.

The redesigned interface for floating-point to fixed-point conversion enables
you to use simulation with multiple test benches, static range analysis, or

both, to determine fixed-point data types for your MATLAB variables.

For details, see “Automated Fixed-Point Conversion”.



User-specified pipeline insertion for MATLAB® variables

User-specified pipeline insertion for MATLAB
variables

You can now specify pipeline register insertion for variables in your MATLAB
code. This feature is available in both the MATLAB to HDL workflow and
the MATLAB Function block.

To learn how to pipeline variables in the MATLAB to HDL workflow, see
“Pipeline MATLAB Variables”.

To learn how to pipeline variables in the MATLAB Function block, see
“Pipeline Variables in the MATLAB Function Block”.



R2013a

Resource sharing and streaming without over
clocking

You can now constrain the resource sharing and streaming optimizations to
prevent or reduce overclocking. The coder optimizes your design based on two
parameters that you specify: maximum oversampling ratio, MaxOversampling,
and maximum computation latency, MaxComputationLatency.

For single-rate resource sharing or streaming, you can set MaxOversampling
to 1.

To learn more about constrained overclocking, maximum oversampling ratio,
and maximum computation latency, see:

® “Optimization With Constrained Overclocking”

e “Maximum Oversampling Ratio”

¢ “Maximum Computation Latency”



Generation of custom IP core with AXI4 interface

Generation of custom IP core with AXI4 interface
You can now generate custom IP cores with an AXI4-Lite or AXI4-Stream
Video interface. You can integrate these custom IP cores with your design in
a Xilinx® EDK environment for the Xilinx Zynq®-7000 Platform.

For more details, see “Custom IP Core Generation”.

To view an example that shows how to generate a custom IP core, at the
command line, enter:

hdlcoder_ip_core_led_blinking



R2013a

Coprocessor synchronization in FPGA Turnkey and IP
Core Generation workflows

The coder can now automatically synchronize communication and data
transfers between your processor and FPGA. You can use the new
Processor/FPGA synchronization mode in the FPGA Turnkey workflow
with xPC Target™, or when you generate a custom IP core.

For more details, see “Processor and FPGA Synchronization”.



Code generation for System objects in a MATLAB Function block

Code generation for System objects in a MATLAB
Function block

You can now generate code from a MATLAB Function block containing
System objects.

For details, see System Objects under MATLAB Language Support, in
“MATLAB Function Block Usage”.



R2013a

Resource sharing for the MATLAB Function block

You can now specify a resource sharing factor for the MATLAB Function
block to share multipliers in the MATLAB code.

For details, see “Resource Sharing” and “Specify Resource Sharing”.



Finer control for delay balancing

Finer control for delay balancing

You can now disable delay balancing for a subsystem within your DUT
subsystem.

For details, see “Balance Delays”.



R2013a

10

Complex multiplication optimizations in the Product
block

You can now share multipliers used in a single complex multiplication in the
Product block. Distributed pipelining can also move registers between the
multiply and add stages of a complex multiplication.



Speedgoat IO331 Spartan-6 FPGA board for FPGA Turnkey workflow

Speedgoat 10331 Spartan-6 FPGA board for FPGA
Turnkey workflow

You can now use the Speedgoat 10331 Spartan-6 FPGA board in the FPGA
Turnkey workflow with xPC Target.

You must have an xPC Target license to use this feature.

11



R2013a

12

Cosimulation and FPGA-in-the-Loop for MATLAB HDL
code generation

With the MATLAB HDL Workflow Advisor, the HDL Verification step
includes automation for the following workflows:

¢ Verify with HDL Test Bench: Create a standalone test bench. You can
choose to simulate a model using ModelSim® or Incisive® with a vector file
created by the Workflow Advisor.

¢ Verify with Cosimulation: Cosimulate the DUT in ModelSim or Incisive
with the test bench in MATLAB.

¢ Verify with FPGA-in-the-Loop: Create the FPGA programming file and
test bench, and, optionally, download it to your selected development board.

You must have an HDL Verifier™ license to use these workflows.



HDL coding standard report and lint tool script generation

HDL coding standard report and lint tool script
generation

You can now generate a report that shows how well your generated HDL code
conforms to an industry coding standard. Errors and warnings in the report
link to elements in your original design so you can fix problems.

You can also generate third-party lint tool scripts to use to check your
generated HDL code. In this release, you can generate LEDA, Spyglass, and
generic scripts.

To learn more about the coding standard report, see “HDL Coding Standard
Report”.

To learn how to generate a coding standard report and lint tool script in the
Simulink® to HDL workflow, see:

® “Generate an HDL Coding Standard Report”
® “Generate an HDL Lint Tool Script”

To learn how to generate a coding standard report and lint tool script in the
MATLAB to HDL workflow, see:

® “Generate an HDL Coding Standard Report”
® “Generate an HDL Lint Tool Script”

13



R2013a

14

Output folder structure includes model name
Compatibility Considerations: Yes

When you generate code for a subsystem within a model, the output folder
structure now includes the model name.

For example, if you generate code for a subsystem in a model, Mymodel, the
output folder is hdlsrc/Mymodel.

Compatibility Considerations

If you have scripts that depend on a specific output folder structure, you must
update them with the new structure.



File I/O to read test bench data in Verilog®

File 1/0 to read test bench data in Verilog

You can now specify the generated HDL test bench to use file I/O to read
input stimulus and output response data during simulation, instead of
including data constants in the test bench code. Doing so improves scalability
for designs needing long simulations.

This feature is available when Verilog® is the target language.

For details, see “Test Bench Generation with File 1/0”.

15



R2013a

16

Prefix for module or entity name

You can now specify a prefix for every module or entity name in the generated
HDL code. This feature helps you to avoid name clashes when you want to
have multiple instances of the HDL code generated from the same block. For
details, see ModulePrefix.



Single rate Newton-Raphson architecture for Sqrt, Reciprocal Sqrt

Single rate Newton-Raphson architecture for Sqrt,

Reciprocal Sqrt

The Sqrt, Reciprocal Sqrt, reciprocal Divide, and reciprocal Math Function
blocks now have a single-rate pipelined architecture. The new architecture

enables you to use the high-speed Newton-Raphson algorithm without

multirate or overclocking.

The following table lists each block with its new block implementation.

Block Implementation Details
Name
Sqrt SqrtNewtonSingleRate | See “Sqrt”.

Reciprocal Sqrt

RecipSqrtNewtonSingleRade “Reciprocal Sqrt”.

Divide (reciprocal)

RecipNewtonSingleRatg See “Divide

(reciprocal)”.

Math Function

(reciprocal)

RecipNewtonSingleRatg See “Math Function

(reciprocal)”.

17



R2013a

Additional System objects supported for code
generation

Effective with this release, the following System objects provide HDL code
generation:

® comm.HDLCRCGenerator

e comm.HDLCRCDetector

e comm.HDLRSEncoder

e comm.HDLRSDecoder

e dsp.HDLNCO

18



Additional blocks supported for code generation

Additional blocks supported for code generation

The following blocks are now supported for HDL code generation:

NCO HDL Optimized

Bias

Relay

Dot Product

Sum with more than two inputs with different signs

MinMax with multiple input data types

19



R2013a

20

Functionality being removed
Compatibility Considerations: Yes

Property Name

What Happens
When You Use
This Property?

Use This
Property
Instead

Compatibility
Considerations

RAMStyle

Error

RAMArchitecture

The new
property

syntax differs.
Replace existing
instances of
RAMStyle with
the correct
RAMArchitecture
syntax.

GainImpls

Error

“ConstMultiplierQptineiza¢von”

property

syntax differs.

Replace existing

instances of

GainImpls with

the correct
“ConstMultiplierOptimization
syntax.




R2012b

Version: 3.1
New Features: Yes
Bug Fixes: No

21



R2012b

Input parameter constants and structures in
floating-point to fixed-point conversion

Floating-point to fixed-point conversion now supports structures and constant
value inputs.

22



RAM, biquad filter, and demodulator System objects

RAM, biquad filter, and demodulator System objects

HDL RAM System object

With release 2012b, you can use the hdlram System object™ for modeling
and generating fixed-point code for RAMs in FPGAs and ASICs. The hdlram
System object provides simulation capability in MATLAB for Dual Port,
Simple Dual Port, and Single Port RAM. The System object also generates
RTL code that can be inferred as a RAM by most synthesis tools.

To learn how to model and generate RAMs using the hdlram System object,
see Model and Generate RAM with hdlram.

HDL System object support for biquad filters
HDL support has been added for the following System object:

® dsp.BiquadFilter

HDL support with demodulator System objects
HDL support has been added for the following System objects:

® comm.BPSKDemodulator

® comm.QPSKDemodulator

e comm.PSKDemodulator

® comm.RectangularQAMDemodulator

® comm.RectangularQAMModulator

23


http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/model-and-generate-rams-with-hdlram.html

R2012b

24

Generation of MATLAB Function block in the MATLAB
to HDL workflow

You can now generate a MATLAB Function block during the MATLAB

to HDL workflow. You can use the generated block for further design,

simulation, and code generation in Simulink.

For details, see MATLAB Function Block Generation.


http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/matlab-function-block-generation.html

HDL code generation for Reed Solomon encoder and decoder, CRC detector, and multichannel Discrete FIR filter

HDL code generation for Reed Solomon encoder and
decoder, CRC detector, and multichannel Discrete
FIR filter

HDL code generation
In R2012b, HDL code generation support has been added for the following

blocks:
® General CRC Syndrome Detector HDL Optimized

For an example of using the HDL-optimized CRC generator and detector
blocks, see Using HDL Optimized CRC Library Blocks.

¢ Integer-Input RS Encoder HDL Optimized
¢ Integer-Output RS Decoder HDL Optimized

Multichannel Discrete FIR filters

The Discrete FIR Filter block accepts vector input and supports multichannel
implementation for better resource utilization.

¢ With vector input and channel sharing option on, the block supports
multichannel fully parallel FIR, including direct form FIR, sym/antisym
FIR, and FIRT. Support for all implementation parameters, for example:
multiplier pipeline, add pipeline registers.

® With vector input and channel sharing option off, the block instantiates
one filter implementation for each channel. If the input vector size is N,
N identical filters are instantiated.

Applies to the fully parallel architecture option for FIR filters only.

25



R2012b

26

Targeting of custom FPGA boards

The FPGA Board Manager and New FPGA Board Wizard allow you to
add custom board information so that you can use FIL simulation with an

FPGA board that is not one of the pre-registered boards. See “FPGA Board
Customization”.



Optimizations for MATLAB Function blocks and black boxes

Optimizations for MATLAB Function blocks and black
boxes

The resource sharing optimization now operates on MATLAB Function blocks.

For details, see Specify Resource Sharing.

The delay balancing and distributed pipelining optimizations now operate on
black box subsystems. To learn how to specify latency and enable distributed
pipelining for a black box subsystem, see Customize the Generated Interface.

27


http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/specify-resource-sharing.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/customizing-the-generated-interface.html

R2012b

28

Generate Xilinx System Generator Black Box block
from MATLAB

You can now generate a Xilinx System Generator Black Box block during the
MATLAB-to-HDL workflow. You can use the generated block for further
design, simulation, and code generation in Simulink.

For details, see Xilinx System Generator Black Box Block Generation.


http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/xilinx-system-generator-black-box-block-generation.html

Save and restore HDL-related model parameters

Save and restore HDL-related model parameters

Two new functions, hdlsaveparams and hdlrestoreparams, enable you to
save and restore nondefault HDL-related model parameters. Using these
functions, you can perform multiple iterations on your design to optimize the

generated code.

For details, see hdlsaveparams and hdlrestoreparams.

29


http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/hdlsaveparams.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/hdlrestoreparams.html

R2012b

30

Command-line interface for MATLAB-to-HDL code
generation

You can now convert your MATLAB code from floating-point to fixed-point
and generate HDL code using the command-line interface.

To learn how to use the command line interface, open the tutorial:

showdemo mlhdlc_tutorial_cli



User-specifiable clock enable toggle rate in test bench

User-specifiable clock enable toggle rate in test
bench

You can now specify the clock enable toggle rate in your test bench to match
your input data rate or improve test coverage.

To learn how to specify your test bench clock enable toggle rate, see Test
Bench Clock Enable Toggle Rate Specification.

31


http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/test-bench-clock-enable-toggle-rate-specification.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/test-bench-clock-enable-toggle-rate-specification.html

R2012b

RAM mapping for dsp.Delay System object

The dsp.Delay System object now maps to RAM if the RAM mapping
optimization is enabled and the delay size meets the RAM mapping threshold.

To learn how to map the dsp.Delay System object to RAM, see Map Persistent
Arrays and dsp.Delay to RAM.

32


http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/how-to-map-persistent-arrays-to-ram.html
http://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/how-to-map-persistent-arrays-to-ram.html

Code generation for Repeat block with multiple clocks

Code generation for Repeat block with multiple clocks

You can now generate code for the DSP System Toolbox™ Repeat block in a
model with multiple clocks.

33



R2012b

34

Automatic verification with cosimulation using HDL
Coder

With the HDL Coder™ HDL Workflow Advisor, you can automatically
verify using your Simulink test bench with the new verification step Run
Cosimulation Test Bench. During verification, the HDL Workflow Advisor
and HDL Verifier verify the generated HDL using cosimulation between the
HDL Simulator and the Simulink test bench. See Automatic Verification

in the HDL Verifier documentation.



ML605 Board Added To Turnkey Workflow

ML605 Board Added To Turnkey Workflow

The Xilinx Virtex-6 FPGA ML605 board has been added for Turnkey
Workflow in the HDL Workflow Advisor.

35






R2012a

Version: 3.0
New Features: Yes
Bug Fixes: No

37



R2012a

38

Product Name Change and Extended Capability

HDL Coder replaces Simulink HDL Coder and adds the HDL code generation
capability directly from MATLAB.

To generate HDL code from MATLAB, you need the following products:

HDL Coder

MATLAB Coder™
Fixed-Point Toolbox™
MATLAB

To generate HDL code from Simulink, you need the following products:

e HDL Coder
MATLAB Coder
Fixed-Point Toolbox

Simulink Fixed Point™

Simulink

MATLAB



Code Generation from MATLAB®

Code Generation from MATLAB
You can now generate HDL code directly from MATLAB code.
This workflow provides:

¢ Verilog or VHDL® code generation from MATLAB code.

® Test bench generation from MATLAB scripts.

* Automated conversion from floating point code to fixed point code.

* Automated HDL verification through integration with ModelSim and ISim.

e HDL code generation for a subset of System objects from the
Communications System Toolbox™ and DSP System Toolbox.

® A traceability report mapping generated HDL code to your original
MATLAB code.

The MATLAB to HDL workflow provides the following automated HDL code
optimizations:

® Area optimizations: RAM mapping for persistent array variables, loop
streaming, resource sharing, and constant multiplier optimization.

® Speed optimizations: input pipelining, output pipelining, and distributed
pipelining.

The coder can also generate a resource utilization report, with RAM usage
and the number of adders, multipliers, and muxes in your design.

See also HDL Code Generation from MATLAB.

39


http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/bta01v0.html

R2012a

40

Code Generation from Any Level of Subsystem
Hierarchy

You can now generate HDL code from a subsystem at any level of the
subsystem hierarchy. In previous releases, you could generate HDL code
from the top-level subsystem only.

This feature also enables you to check any level subsystem for code generation
compatibility, and to automatically generate a testbench.



Automated Subsystem Hierarchy Flattening

Automated Subsystem Hierarchy Flattening

You can now generate code with a flattened subsystem hierarchy, while
preserving hierarchy in nested subsystems.

This option enables you to perform more extensive area and speed
optimization on the flattened component. It also enables you to reduce the

number of HDL output files.

See also Hierarchy Flattening.

41


http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdbbiu.html

R2012a

42

Support for Discrete Transfer Fcn Block
You can now generate HDL code from the Discrete Transfer Fcn block.

For details, see Discrete Transfer Fen Requirements and Restrictions.


http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/bsmj7i0-1.html#btei_bh

User Option to Constrain Registers on Output Ports

User Option to Constrain Registers on Output Ports

A new property, ConstrainedOutputPipeline, enables you to specify the
number of registers you wish to have on an output port without introducing
additional delay on the input to output path. The coder redistributes existing
delays within your design to try to meet the constraint. This behavior is
different from the OutputPipeline property, which introduces additional
delay on the input to output path.

If the coder is unable to meet the constraint using existing delays, it reports

the difference between the number of desired and actual output registers
in the timing report.

43



R2012a

44

Distributed Pipelining for Sum of Elements, Product
of Elements, and MinMax Blocks

The Sum of Elements, Product of Elements, and MinMax blocks can now
participate in distributed pipelining if their architecture is set to Tree.



MATLAB Function Block Enhancements

MATLAB Function Block Enhancements

Multiple Accesses to RAMs Mapped from Persistent Variables

You can now perform multiple reads and writes to a persistent variable, and
the persistent variable will still be mapped to RAM. In previous releases, a
RAM mapped from a persistent variable could be accessed only once.

Streaming for MATLAB Loops and Vector Operations

You can now perform streaming on MATLAB loops and loops created from
vector operations for improved area efficiency.

For details, see Loop Optimization.

Loop Unrolling for MATLAB Loops and Vector Operations

You can now unroll user-written MATLAB loops and loops created from vector
operations. This enables the coder to perform area and speed optimizations
on the unrolled loops.

For details, see Loop Optimization.

45


http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdowon-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdowon-1.html

R2012a

46

Automated Code Generation from Xilinx System
Generator for DSP Blocks

You can now automatically generate HDL code from subsystems containing
Xilinx System Generator for DSP blocks.

For details, see Code Generation with Xilinx System Generator Subsystems.


http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btel3j3.html

Altera® Quartus Il 11.0 Support in HDL Workflow Advisor

Altera Quartus Il 11.0 Support in HDL Workflow
Advisor

The HDL Workflow Advisor has now been tested with Altera® Quartus II
11.0. In previous releases, the HDL Workflow Advisor was tested with Altera
Quartus II 9.1.

47



R2012a

48

Automated Mapping to Xilinx and Altera Floating
Point Libraries

The coder can now map Simulink floating point operations to synthesizable
floating point Altera Megafunctions and Xilinx LogiCORE IP Floating Point
Operator v5.0 blocks. To learn more, see FPGA Target-Specific Floating-Point
Library Mapping.

For a list of supported Altera Megafunction blocks, see Supported Altera
Floating-Point Library Blocks.

For a list of supported Xilinx LogicCORE IP blocks, see Supported Xilinx
Floating-Point Library Blocks.


http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btd0dus-1
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btd0dus-1
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btdzecc-1
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btdzecc-1

Vector Data Type for PCl Interface Data Transfers Between xPC Target™ and FPGA

Vector Data Type for PCl Interface Data Transfers
Between xPC Target and FPGA

In the FPGA Turnkey workflow, you can now use vector data types with the
Scalarize Vector Ports option to automatically generate PCI DMA transfers
on the PCI interface betweenxPC Target and FPGA. You no longer need to
manually insert multiplexers, demultiplexers and provide synchronization
logic for vector data transfers.

If the Scalarize Vector Ports option is disabled when the code generation
subsystem has vector ports, the coder displays an error.

49



R2012a

50

New Global Property to Select RAM Architecture

Compatibility Considerations: Yes

There is a new global property, RAMArchitecture, that enables you to
generate RAMs either with or without clock enables. This property applies to
every RAM in your design, and replaces the block level property, RAMStyle.
By default, RAMs are generated with clock enables.

To generate RAMs without clock enables, set RAMArchitecture to
'WithoutClockEnable'. To generate RAMs with clock enables, either use

the default, or set RAMArchitecture to 'WithClockEnable'. For more
information, see Implement RAMs With or Without Clock Enable.

Compatibility Considerations
The coder now ignores the block level property, RAMStyle.

If a block’s RAMStyle property is set, the coder generates a warning.


http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/brrdj5v-1.html#br7j5tp

Turnkey Workflow for Altera® Boards

Turnkey Workflow for Altera Boards

HDL Workflow Advisor now supports Altera FPGA design software and the
following Altera development kits and boards:

e Altera Arria II GX FPGA development kit
Altera Cyclone III FPGA development kit
Altera Cyclone IV GX FPGA development kit

Altera DE2-115 development and education board

This workflow has been tested with Altera Quartus II 11.0.

51



R2012a

52

HDL Support For Bus Creator and Bus Selector Blocks

Release R2012a provides HDL code generation for the Bus Creator and Bus
Selector blocks. You must use these blocks for your buses if you want HDL
support.



HDL Support For HDL CRC Generator Block

HDL Support For HDL CRC Generator Block

Release R2012a provides HDL code generation for the new HDL CRC
Generator block.

53



R2012a

54

HDL Support for Programmable Filter Coefficients

When using filter blocks to generate HDL code, you can specify coefficients
from input port(s). This feature applies to FIR and BiQuad filter blocks only.
Fully Parallel and all serial architectures are supported.

Follow these directions to use programmable filters:

1 Select Input port(s) as coefficient source from the filter block mask.
2 Connect the coefficient port with a vector signal.

3 Specify the implementation architecture and parameters from the HDL
Coder property interface.

4 Generate HDL code.

Notes
¢ For fully parallel implementations, the coefficients ports are connected to
the dedicated MAC directly.

® For serial implementation, the coefficients ports first go to a mux, and
then to the MAC. The mux decides the coefficients that used at current
time instant

® For Discrete FIR filters, this feature is not supported under the following
conditions:

= Implementations having coefficients specified by dialog parameters (for
example, complex input and coefficients with serial architecture)

= Filters using DA architecture
= CoeffMultipliers specified as csd or factored-csd

® For Biquad filters, this feature is not supported when CoeffMultipliers are
specified as csd or factored-csd.



Synchronous Multiclock Code Generation for CIC Decimators and Interpolators

Synchronous Multiclock Code Generation for CIC
Decimators and Interpolators

You can specify multiple clocks in one of the following ways:

¢ Use the model-level parameter ClockInputs with the function makehdl
and specify the value as 'Multiple’.

¢ In the Clock settings section of the Global Settings pane in the HDL
Code Generation Configuration Parameters dialog box, set Clock inputs
to Multiple.

When you use single-clock mode, HDL code generated from multirate models
uses a single master clock that corresponds to the base rate of the DUT. When
you use multiple-clock mode, HDL code generated from multirate models use
one clock input for each rate in the DUT. The number of timing controllers
generated in multiple-clock mode depends on the design in the DUT.

The ClockInputs parameter supports the values ’Single’ and 'Multiple’, where

the default is ’Single’. In the default single-clock mode, the coder behavior is
unchanged from previous releases.

55



R2012a

56

Filter Block Resource Report Participation

Resource reports include the HDL resource usage for filter blocks. The report
includes adders, subtractors, multipliers, multiplexers, registers. This feature
covers all filter blocks, and all implementations for the block.

You can turn on the report feature using the command line (ResourceReport)
or GUI (Generate resource utilization report). The following illustrations
show a report for a model that includes a Discrete FIR Filter block.

rﬂ test/dut * l'=' =] i:h1

File Edit View Simulation Format Tools Help
OezES i | <2 > 100 |Normal |

P> mE (D
ab

Input Output

4 Discrete FIR Filter

Constant

Ready 125% FixedStepDiscrete




Filter Block Resource Report Participation

‘@ High-level Resource Utilization Report for test

File Edit View Go Debug Desktop Window Help

@ 3| G| M| Location: filey//H/Documents/MATLAB/hdlsrc/html test/test_bill_of_materials.htm

-
-
Resource Utilization Report for test —
Summary
Multipliers 2
Adders/Subtractors 2
Registers 7
RAMs 0
Multiplexers 3
Detailed Report
[Expand all] [Collapse all]
Report for Subsystem: dut
Multipliers (2)
[-] 12x12-bit Multiply :
*ab
[-] 16x16-bit Multiply :
* Discrete FIR Filter
Adders/Subtractors (2) 3
[-] 32x32-bit RAdder : 1
® Sum
[-] 34x34-bit Adder : 1
s Discrete FIR Filter
Registers (7)
32-bit Register : 1
[-] 16-bit Register : 4
« Discrete FIR Filter
[-] 33-bit Register : 2
* Discrete FIR Filter
Multiplexers (3)
[-] 33-bit 2-to-1 Multiplexer : 1
* Discrete FIR Filter
[-] 16-bit 4-to-1 Multiplexer : 2 —
s Discrete FIR Filter
<
| Done
- =

57



R2012a

58

HDL Block Properties Interface Allows Choice of Filter

Architecture

You can choose from several filter architectures for FIR Decimation and
Discrete FIR Filter blocks. Choices are:

e Fully Parallel

® Distributed Architecture (DA)

e Fully Serial

e Party Serial

e (Cascade Serial

The availability of architectures depends on the transfer function type
and filter structure of filter blocks. For Partly Serial and DA, specify
at least SerialPartition and DALUTPartition, respectively, so that

these architectures are inferred. For example, if you select Distributed
Architecture (DA), make sure to also set DALUTPartition.



HDL Block Properties Interface Allows Choice of Filter Architecture

Implementation

!'Z| CIHDL Properties: Discrete FIR Filter

Implementation

Architecture |Fuly Paralel |
Implementation Parameters

AddPipelineRegisters [oe ~
CoeffMultipliers |muttipter |
InputPipeline [o |
MultipliernputPipeline [0 |
MultipierOutputPipeiine [ |
OutputPipeline |E| |

[ o< ][ concel ][ mep ][ appy

)

Implementation

Architecture |Partly serial |

Implementation Parameters

InputPipeline [0 |

Multilierinputpipeline [0 |

MultipierOutputPipeiine [0 |

OutputPipeline [a |

SerialPartition | -1 |
| . e

G D Prope e D eLe R

Implementation

Architecture |Distributed Arithmetic (0A) ~|

Implementation Parameters

DALUTPartition E |

DARadix [2 |

InputPipeiine [0 |

OutputPipeline |E| |

ok [ g |[ ek | away

Architecture |Futy serial ~|

Implementation Parameters

InputPipeline [o |

MultiplierInputPipeline [a |

MultiplierCutputPipeline |EI |

OutputPipeline [o |
[ ox [ concel [ mep ][ apoy

Implementation

Architecture | cascade serl ~|
Implementation Parameters

InputPipeline [0 |
MutiplerinputPipeine [0 |
MultiplierOutputPipeline |EI |
OutputPipeline [a |
SerialPartition | -1 |

[ ok J[ cancel J[ e ][ apolv

)

59



R2012a

60

HDL Support for FIR Filters With Serial Architectures
and Complex Inputs

HDL support for serial implementations of a FIR block with complex inputs.



HDL Support for External Reset Added for Proportional-Integral-Derivative (PID) and Discrete Time Integrator (DTI) Blocks

HDL Support for External Reset Added for
Proportional-Integral-Derivative (PID) and Discrete
Time Integrator (DTI) Blocks

External reset support added for level mode.

61



	toc
	R2013a
	Static range analysis for floating-point to fixed-point conversi
	User-specified pipeline insertion for MATLAB variables
	Resource sharing and streaming without over clocking
	Generation of custom IP core with AXI4 interface
	Coprocessor synchronization in FPGA Turnkey and IP Core Generati
	Code generation for System objects in a MATLAB Function block
	Resource sharing for the MATLAB Function block
	Finer control for delay balancing
	Complex multiplication optimizations in the Product block
	Speedgoat IO331 Spartan-6 FPGA board for FPGA Turnkey workflow
	Cosimulation and FPGA-in-the-Loop for MATLAB HDL code generation
	HDL coding standard report and lint tool script generation 
	Output folder structure includes model name
	File I/O to read test bench data in Verilog
	Prefix for module or entity name
	Single rate Newton-Raphson architecture for Sqrt, Reciprocal Sqr
	Additional System objects supported for code generation
	Additional blocks supported for code generation
	Functionality being removed

	R2012b
	Input parameter constants and structures in floating-point to fi
	RAM, biquad filter, and demodulator System objects
	HDL RAM System object
	HDL System object support for biquad filters
	HDL support with demodulator System objects

	Generation of MATLAB Function block in the MATLAB to HDL workflo
	HDL code generation for Reed Solomon encoder and decoder, CRC de
	HDL code generation
	Multichannel Discrete FIR filters

	Targeting of custom FPGA boards
	Optimizations for MATLAB Function blocks and black boxes
	Generate Xilinx System Generator Black Box block from MATLAB
	Save and restore HDL-related model parameters
	Command-line interface for MATLAB-to-HDL code generation
	User-specifiable clock enable toggle rate in test bench
	RAM mapping for dsp.Delay System object
	Code generation for Repeat block with multiple clocks
	Automatic verification with cosimulation using HDL Coder
	ML605 Board Added To Turnkey Workflow

	R2012a
	Product Name Change and Extended Capability
	Code Generation from MATLAB
	Code Generation from Any Level of Subsystem Hierarchy
	Automated Subsystem Hierarchy Flattening
	Support for Discrete Transfer Fcn Block
	User Option to Constrain Registers on Output Ports
	Distributed Pipelining for Sum of Elements, Product of Elements,
	MATLAB Function Block Enhancements
	Multiple Accesses to RAMs Mapped from Persistent Variables
	Streaming for MATLAB Loops and Vector Operations
	Loop Unrolling for MATLAB Loops and Vector Operations

	Automated Code Generation from Xilinx System Generator for DSP B
	Altera Quartus II 11.0 Support in HDL Workflow Advisor
	Automated Mapping to Xilinx and Altera Floating Point Libraries
	Vector Data Type for PCI Interface Data Transfers Between xPC Ta
	New Global Property to Select RAM Architecture
	Turnkey Workflow for Altera Boards
	HDL Support For Bus Creator and Bus Selector Blocks
	HDL Support For HDL CRC Generator Block
	HDL Support for Programmable Filter Coefficients
	Notes

	Synchronous Multiclock Code Generation for CIC Decimators and In
	Filter Block Resource Report Participation
	HDL Block Properties Interface Allows Choice of Filter Architect
	HDL Support for FIR Filters With Serial Architectures and Comple
	HDL Support for External Reset Added for Proportional-Integral-D



